At Oregon State University

  • ❖Gicking, A.M.*, Wang, P.*, Liu, C., Mickolajczyk, K.J., Guo, L.J., Hancock, W.O., and Qiu, W.H.# (2019) The orphan kinesin PAKRP2 achieves processive motility via a noncanonical stepping mechanism. Biophys. J. 116:1270-1281.
  • ❖Popchock, A.R., Jana, S., Mehl, R.A.#, and Qiu, W.H.# (2018) Engineering heterodimeric kinesins through genetic incorporation of noncanonical amino acids. ACS Chem. Biol. 13: 2229–2236. PDF.
  • Gicking, A.M., Swentowsky, K.W., Dawe, R.K.#, and Qiu, W.H.# (2018) Functional diversification of the kinesin-14 family in land plants. FEBS Letters 592: 1918-1928. PDF
  • Wang, P.*, Tseng, K.-F.*, Gao, Y., Cianfrocco, M., Guo, L.J., and Qiu, W.H.# (2018) The central stalk determines the motility of mitotic kinesin-14 homodimers. Cur. Biol. 28:2302-2308. PDF
  • ❖Gicking A.M., Qiu, W.H.#, and Hancock W.O.# (2018) Mitotic kinesins in action: Diffusive searching, directional switching and ensemble coordination. Mol. Biol. Cell, 29: 1153-1156. PDF.
  • ❖Dawe, R.K.#, Lowry, E.G., Gent, J.I., Stitzer, M.C., Swentowski, K.W., Higgins, D.M., Ross-Ibarra, J., Wallacem J.G., Kanizay, L.B., Alabady, M., Qiu, W.H., Tseng, K.-F., Wang, N., Gao, Z., Birchler, J.A., Harkess, A.E., Hodges, A.L., and Hiatt, E.N. (2018) A kinesin-14 motor activates neocentromeres to promote meiotic drive in Maize. Cell, 173, 839–850. PDF.
  • ❖Tseng, K.-F.*, Wang, P.*, Lee, Y.-R.*, Bowen, J., Gicking, A.M., Guo, L., Liu, B.#, and Qiu, W.H.#. (2018) The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor. Nat. Commun., 9:1067 [PDF].
    Featured in EurekAlert!, ScienceDaily and
  • ❖Hams, N., Padmanarayana, M., Qiu, W.H., and Johnson C.P. (2017)  Otoferlin is a multivalent calcium sensitive scaffold linking SNAREs and calcium channels. Proc. Natl. Acad. Sci. USA,114, 8023–8028
  • ❖Popchock, A.R.*, Tseng, K.-F.*, Wang, P., Karplus, P.A., Xiang, X., and Qiu, W.H. (2017) The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat. Commun.,  8, 13999 [PDF].
    Featured in OSU Research NewsEurekAlert!ScienceDaily, Nizagara-Online.Net and
  • ❖Lee, Y.-R., Qiu, W.H., and Liu, B. (2015). Kinesin Motors in Plants: From Subcellular Dynamics to Motility Regulation. Curr. Opin. Plant Biol. 28, 120–126.

Selected publications prior to Oregon State University

  • ❖ Cheng, L., Desai, J., Miranda, C.J., Duncan, J.S., Qiu, W.H., Nugent, A.A., Kolpak, A.L., Wu, C.C., Drokhlyansky, E., Delisle, M.M., Chan, W.-M., Wei, Y., Propst, F., Reck-Peterson, S.L., Fritzsch, B., and Engle, E.C. (2014). Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82, 334-49.
  • ❖ Qiu, W. H.*, Derr, N.D.*, Goodman, B. S., Villa, E., Wu, D., Shih, W., and Reck-Peterson, S.L. (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19, 193-200.
    Highlighted Nature Research News & Views: Nature 482, 44-45 (2012).
  • ❖ Su, X.L., Qiu, W. H., Gupta, M.L., Pereira-Leal. J.B., Reck-Peterson, S.L., and Pellman, D. (2011). Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/Kinesin-8. Mol. Cell 43, 751-763.
  • ❖ Qiu, W. H.*, Li, T. P.*, Zhang, L. Y., Kao, Y.-T., Wang, L. J., and Zhong, D. P. (2008). Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer. Chem. Phys. 350, 154-164.
  • ❖ Zhang, L. Y., Wang, L. J., Kao, Y. T., Qiu, W. H., Yang, Y., Okobiah, O., and Zhong, D. P. (2007). Mapping hydration dynamics around a protein surface. Proc. Natl. Acad. Sci. USA 104, 18461-18466.
  • ❖ Qiu, W. H., Wang, L. J., Lu, W. Y., Boechler, A., Sanders, D. A. R., and Zhong, D. P. (2007). Dissection of complex protein dynamics in human thioredoxin. Proc. Natl. Acad. Sci. USA 104, 5366-5371.
  • ❖ Qiu, W. H., Kao, Y. T., Zhang, L. Y., Yang, Y., Wang, L. J., Stites, W. E., Zhong, D. P., and Zewail, A. H. (2006). Protein surface hydration mapped by site-specific mutations. Proc. Natl. Acad. Sci. USA 103, 13979-13984.
  • ❖ Kim, J., Lu, W. Y., Qiu, W. H., Wang, L. J., Caffrey, M., and Zhong, D. P. (2006). Ultrafast hydration dynamics in the lipidic cubic phase: Discrete water structures in nanochannels. J. Phys. Chem. B 110, 21994-22000.
  • ❖ Zhang, L. Y., Kao, Y. T., Qiu, W. H., Wang, L. J., and Zhong, D. P. (2006). Femtosecond studies of tryptophan fluorescence dynamics in proteins: Local solvation and electronic quenching. J. Phys. Chem. B 110, 18097-18103.
  • ❖ Qiu, W. H.*, Zhang, L. Y.*, Okobiah, O., Yang, Y., Wang, L. J., Zhong, D. P., and Zewail, A. H. (2006). Ultrafast solvation dynamics in human serum albumin: Correlations with conformational transitions and site-selected recognition. J. Phys. Chem. B 110, 10540-10549.
  • ❖ Qiu, W. H., Zhang, L. Y., Kao, Y. T., Lu, W. Y., Li, T. P., Kim, J., Sollenberger, G. M., Wang, L. J., and Zhong, D. P. (2005). Ultrafast hydration dynamics in melittin folding and aggregation: Helix formation and tetramer self-assembly. J. Phys. Chem. B 109, 16901-16910.
  • ❖ Lu, W. Y., Qiu, W. H., Kim, J., Okobiah, O., Hu, H. X., Gokel, G. W., and Zhong, D. P. (2004). Femtosecond studies of crown ethers: supramolecular solvation, local solvent structure and cation pi interaction. Chem. Phys. Letters 394, 415-422.
  • ❖ Lu, W. Y., Kim, J., Qiu, W. H., and Zhong, D. P. (2004). Femtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces. Chem. Phys. Letters 388, 120 126.

* denotes equal contribution
# denotes correspondence or co-correspondence